
2023 Lenovo Internal. All rights reserved.

Formation MCIA
Olivier Lagrasse – Eric Michel

1

2023 Lenovo Internal. All rights reserved.

Agenda

• Présentation de la machine Lenovo “Curta” du MCIA

• Concepts généraux pour une bonne performance des applications scientifiques

– Processeur (fréquence, unités vectorielles, Hyper-Threading…)

– Mémoire, réseau, stockage, parallélisme, consommation électrique…

– Facteurs limitants la performance

• Présentation des outils de construction de code

– Compilateurs : gnu, Intel (legacy et llvm)

– Librairies mathématiques : open source, Intel MKL

– Librairies MPI : IntelMPI, OpenMPI, mvapich2…

• Outils de diagnostic, profiling, analyse

– Système (htop, perf, numactl, gprof …)

– Suite Intel (APS, Vtune,…)

• Optimisation de l'exécution

– Recherche des hotspots CPU, MPI, I/O…

– Options de compilations avancées (vectorisation, auto parallélisation, inlining…)

– Binding des tâches et des threads, mapping de la mémoire

– Utilisation des librairies scientifiques optimisées (MKL…)

– Optimisation des communications MPI (variables d’environnement…)

– Optimisation des I/O parallèles

2023 Lenovo Internal. All rights reserved.

Présentation de la machine Lenovo

“Curta” du MCIA

• 336 nœuds « compute » SD530 : n[001-336]
– 2 * Intel Xeon Gold SKL-6130 16 cœurs @ 2.1GHz

– 92 Go de mémoire

• 4 nœuds « bigmem » SR950 : bigmem[01-04]
– 4 * Intel Xeon Gold SKL-6130 16 cœurs @ 2.1GHz

– 3 To de mémoire

• 4 nœuds « gpu » SR650 : gpu[01-04]
– 2 * Intel Xeon Gold SKL-6130 16 cœurs @ 2.1GHz

– 192 Go de mémoire

– 2 GPUs nVidia P100

• Réseau d’interconnexion : Intel OmniPath 100Go/s par
nœud

• Système d’exploitation : Linux CentOS 7.4

• Gestionnaire de travaux : Slurm

• From: https://redmine.mcia.fr/projects/cluster-curta/wiki

https://redmine.mcia.fr/projects/cluster-curta/wiki

2023 Lenovo Internal. All rights reserved.

Présentation de la machine Lenovo “Curta” du MCIA

• Lenovo SD530 server overview:

– https://lenovopress.lenovo.com/lp0635-thinksystem-sd530-server-xeon-sp-gen-1

• 4 nodes per 2U enclosure

• Up to 84 nodes per 42U rack (21 enclosures)

• Up to 84*16*2 = 2688 cores per rack with Xeon Gold SKL-6130

• 4 racks = 336 nodes = 10752 cores

• Peak performance = 722 TF/s

• HPL performance = ~560 TF/s

• Cumulated STREAM performance = 62.2 TB/s

Front view of the ThinkSystem D2 Enclosure

Internal view of the SD530 compute node

Four ThinkSystem SD530
servers installed in a D2 Enclosure

https://lenovopress.lenovo.com/lp0635-thinksystem-sd530-server-xeon-sp-gen-1

2023 Lenovo Internal. All rights reserved.

Présentation de la machine Lenovo “Curta” du MCIA

• Lenovo SR950 server overview:

– https://lenovopress.lenovo.com/lp0647-thinksystem-sr950-server-xeon-sp-gen-1

• 4 Xeon Gold SKL-6130 processors per 4U (up to 8 maximum)

• Mesh interconnect between processors

• 3TB per node

• 4 nodes = 128 cores with 12 TB of total memory

Lenovo ThinkSystem SR950

Processor numbering (viewed from the rear of the compute trays)

Compute system board

https://lenovopress.lenovo.com/lp0647-thinksystem-sr950-server-xeon-sp-gen-1

2023 Lenovo Internal. All rights reserved.

Présentation de la machine Lenovo “Curta” du MCIA

• Lenovo SR650 server overview:
– https://lenovopress.lenovo.com/lp1050-thinksystem-sr650-server

• 2 Xeon Gold SKL-6130 processors and 2 GPUs per 2U

• nVidia P100 GPUs (12GB)

• 192GB per node

• 4 nodes = 128 cores , 8 GPUs ,1.5 TB of total memory

• HPL GPU performance = 28 TF/s

• Cumulated STREAM GPU performance = 5.6 TB/s

https://lenovopress.lenovo.com/lp1050-thinksystem-sr650-server

2023 Lenovo Internal. All rights reserved.

Présentation de la machine Lenovo “Curta” du MCIA

• Interconnect using Intel Omni-Path (OPA) architecture

• Up to 100Gb/s network bandwidth per adapter

• Low latency

• Re-use of existing OpenFabrics Alliance software

• Fully supported by IntelMPI software

2023 Lenovo Internal. All rights reserved.

Concepts généraux pour une bonne

performance des applications scientifiques

• Processor
– Vector units

– Frequencies

– Hyper-Threading

• Memory
– Affinity

• Network

• Storage

• Parallelism

• Power consumption

• Limiting factors

• Hardware evolution

2023 Lenovo Internal. All rights reserved.

General concepts

• The processor is the heart of the performance of HPC applications

• Processor Intel Xeon Gold “Skylake” 6130:
– 16 cores @ 2.1GHz (nominal frequency) and 3.7GHz (Turbo frequency)

- Marketing numbers, see next slide for reality

– HyperThreading allows using 2 threads per physical core

– 22MB cache L3

– TDP 125W

– 2 * AVX512 units, FMA…

• Single node performance:
– Peak = 2 * 16 * 32 * 2.1 = 2150.4 GF/s

– HPL = 1705 GF/s (79% of Peak)

– STREAM Triad = 185 GB/s (5.9 GB/s per core)

– HPCG = 35 GF/s

2023 Lenovo Internal. All rights reserved.

General concepts

• Processor : Vector units

• SIMD - Single Instruction Multiple Data
– The same operation is applied

simultaneously multiple inputs

• Compilers can generate vector
instructions with appropriate options

• Intel MKL library transparently
provides access to optimal vector
units of hardware used

• Example of codes using AVX512:
– HPL, Dgemm (Large matrix

multiplications)

– Gromacs, Lammps, Namd, Quantum-
Espresso

– AI codes (small matrix multiplications)

– Cryptography…

https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-animation.html

https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-animation.html

2023 Lenovo Internal. All rights reserved.

General concepts

• Processor : Vector units

• SIMD - Single Instruction Multiple Data
– The same operation is applied simultaneously

multiple inputs

• SSE - Streaming SIMD Extensions
– Further iterations produced SSE2, SSE3, SSE4.1,

SSE4.2

– 128 bit XMM registers (4 floats, 2 doubles))

• AVX - Advanced Vector Extensions
– 256 bit wide registers (YMM), supports 3

operand instructions

– AVX-512 has 512-bit registers (ZMM)

2023 Lenovo Internal. All rights reserved.

General concepts

• Processor : Vector units

• Vectorization can be enabled by:
– Using compiler vectorization options (all compilers have vectorization options)

– Using an already vectorized library (MKL, Libint, fftw…)

• How to check vectorization is occurring?
– Use compiler options for reporting

- “-qopt-report=5”

– Check produced assembly code

- Registers : zmm = AVX512 , ymm = AVX2 , xmm = SSE

• A portion of code can be almost fully vectorized, but you may not see the impact of vectorization:
– Memory bandwidth bound code like STREAM

– Data structure or size may limit improvement : array so small that time in reminder loop is similar that vector loop

– Badly vectorized code : lot of “shift” instructions compared to computing instructions

– Vectorized portion is very small compared to total application (profile your code execution!)

2023 Lenovo Internal. All rights reserved.

General concepts

• Processor : Frequencies
– CPU speed is determined by how many calculations the processor can perform per cycle.

– Clock speed is expressed in gigahertz — billions of cycles per second.

- Higher clock speeds generate more heat and consume more power

– Intel Turbo Boost technology enables processors to safely and efficiently increase clock speed beyond their usual operating
limits.

– Peak performance (GF/s) = #cores * #DP-Flops-per-cycle * frequency(GHz)

- For Icelake 6130 CPU: 16*32*2.1 = 1075.2 GF/s

2023 Lenovo Internal. All rights reserved.

General concepts

• Processor : Frequencies

Specifications from Intel

2023 Lenovo Internal. All rights reserved.

General concepts

• Processor : Hyper-Threading

• This is Intel’s implementation of “Simultaneous Multi Threading” SMT

• It allows 2 instructions flows (processes, threads) to execute on the same core and same
hardware units

• Goal is to fill the “holes” in the instructions pipeline of the core and then increase average
usage of the units:

– Load, store, branches, integer and floating point units,…

• This can lead to significant performance improvement:

– By doubling the number of threads or processes from one application on same number of processor
cores

- The 2 instructions flows are similar which can limit the global improvement

- The same units are required by the 2 flows

– By running 2 different applications on the same processor core

- Potentially leads to the biggest improvements

- The 2 instructions flows are different and may not need the same units to be used at same time

• From user perspective, it is transparent:

– Operating systems (Linux…) shows 2 “virtual” cores for a “physical” core and they can be use as any
core.

– Default mode is set in the UEFI settings

- Processors.HyperThreading=Enabled

– It can be enabled and disabled dynamically thru Linux commands

- “echo -n 1 > /sys/devices/system/cpu/cpu0/online”

- But we recommend rebooting to avoid numbering mismatch or other side effects

2023 Lenovo Internal. All rights reserved.

General concepts

• Processor : Hyper-Threading

• If an application is not fully stressing a resource

– Vector units, memory bandwidth, network bandwidth…

• Then it is a good candidate for testing impact of HT

– Needs to have a level of parallelism:

- OpenMP threads, MPI tasks, throughput execution

• HT impact depends also on

– The input cases

– The processor generation

– The compiler version and optimizations

– Pinning of threads/processes

• Example of “HT friendly” codes:

– Gromacs : up to 20%

– CP2K (with threads) : up to 15%

– GRAPH500 (depends on implementation) : up to 20%

– AVBP : up to 15%

– NAMD, LAMMPS

– Openssl or cryptographic codes in throughput mode

• HT can provide performance improvement for free

Hyper-Threading ON

$ lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 128

On-line CPU(s) list: 0-127

Thread(s) per core: 2

Core(s) per socket: 32

Socket(s): 2

NUMA node(s): 2

Vendor ID: GenuineIntel

CPU family: 6

Model: 106

Model name: Intel(R) Xeon(R)

Platinum 8352Y CPU @ 2.20GHz

Stepping: 6

CPU MHz: 2200.000

CPU max MHz: 2201.0000

CPU min MHz: 800.0000

BogoMIPS: 4400.00

Virtualization: VT-x

L1d cache: 48K

L1i cache: 32K

L2 cache: 1280K

L3 cache: 49152K

NUMA node0 CPU(s): 0-31,64-95

NUMA node1 CPU(s): 32-63,96-127

…

Hyper-Threading OFF

$ lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 64

On-line CPU(s) list: 0-63

Thread(s) per core: 1

Core(s) per socket: 32

Socket(s): 2

NUMA node(s): 2

Vendor ID: GenuineIntel

CPU family: 6

Model: 106

Model name: Intel(R) Xeon(R)

Platinum 8352Y CPU @ 2.20GHz

Stepping: 6

CPU MHz: 2200.000

CPU max MHz: 2201.0000

CPU min MHz: 800.0000

BogoMIPS: 4400.00

Virtualization: VT-x

L1d cache: 48K

L1i cache: 32K

L2 cache: 1280K

L3 cache: 49152K

NUMA node0 CPU(s): 0-31

NUMA node1 CPU(s): 32-63

…

2023 Lenovo Internal. All rights reserved.

General concepts

• Memory

• Each socket has its local main memory.

• Each socket can access main memory of other sockets.

• Local memory access is faster: “Memory Affinity”
– Best performance when cores access memory local to their sockets.

• Memory is only allocated by OS when written to, not when allocated via malloc
– Known as "first-touch" policy. Memory is allocated on memory local to the first core to write ("touch") to it.

2023 Lenovo Internal. All rights reserved.

General concepts

• Memory

• Memory is organized by the hardware into pages. Typically a page size is 4096 bytes.

• Memory is not allocated all at once by first-touch per page.

• If cores on different sockets touch different pages that are part of the same array, the array will be physically
allocated across different sockets' main memory.

• Logical access will be unaffected but some cores may require longer to access some elements than others.

• Best is when cores touch the pages they will need and do not access any other pages.

2023 Lenovo Internal. All rights reserved.

General concepts

• Memory

• Cache

– Main memory is far from the CPU

– Access is slow compared to data processing
speeds

– Cache is a smaller, but faster copy of data from
main memory

– CPU manages movement of data to and from
main memory and cache

2023 Lenovo Internal. All rights reserved.

General concepts

• Memory

SNC 2

$ lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 64

On-line CPU(s) list: 0-63

Thread(s) per core: 1

Core(s) per socket: 32

Socket(s): 2

NUMA node(s): 4

Vendor ID: GenuineIntel

CPU family: 6

Model: 106

Model name: Intel(R) Xeon(R)

Platinum 8352Y CPU @ 2.20GHz

Stepping: 6

CPU MHz: 2200.000

CPU max MHz: 2201.0000

CPU min MHz: 800.0000

BogoMIPS: 4400.00

Virtualization: VT-x

L1d cache: 48K

L1i cache: 32K

L2 cache: 1280K

L3 cache: 49152K

NUMA node0 CPU(s): 0-15

NUMA node1 CPU(s): 16-31

NUMA node2 CPU(s): 32-47

NUMA node3 CPU(s): 48-63

…

SNC 1

$ lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 64

On-line CPU(s) list: 0-63

Thread(s) per core: 1

Core(s) per socket: 32

Socket(s): 2

NUMA node(s): 2

Vendor ID: GenuineIntel

CPU family: 6

Model: 106

Model name: Intel(R) Xeon(R)

Platinum 8352Y CPU @ 2.20GHz

Stepping: 6

CPU MHz: 2200.000

CPU max MHz: 2201.0000

CPU min MHz: 800.0000

BogoMIPS: 4400.00

Virtualization: VT-x

L1d cache: 48K

L1i cache: 32K

L2 cache: 1280K

L3 cache: 49152K

NUMA node0 CPU(s): 0-31

NUMA node1 CPU(s): 32-63

…

2023 Lenovo Internal. All rights reserved.

General concepts
• Memory Affinity example

• Naïve implementation of Laplacian (finite differences)
without parallel initialization of the arrays used during computations

– Initialization in serial (no OpenMP)

– Computations in parallel (using OpenMP)

• Benchmark system with 2 * AMD 9654 processors :
2 * 96 cores , 8 numa nodes per node (NPS=4)

– By default “Numa balancing” is disabled

- (# cat /proc/sys/kernel/numa_balancing shows 0)

– Threads are pinned to physical cores

• Execution

– Numa Balancing OFF + Single thread : 27 min

– Numa Balancing OFF + 192 threads : 29 min

- So using all cores we are slower than with 1 core

- All memory is allocated on numa node #0, and most threads are accessing remote memory : huge contention

– Numa Balancing ON + 192 threads : 2.5 min

- The memory pages allocated to numa node #0 are moved to local memory by Linux, which improves significantly
performance

– Numa Balancing ON + 192 threads + numactl –interleave=all : 1 min 35 sec

– Modified source code (initialization in parallel with OpenMP) + 192 threads : 1 min 41 sec

• Memory affinity is critical for good performance

– Best is to implement smartly in source code (assuming Linux “first touch”)

– Can be somehow mitigated thru Linux tools : automatic “numa balancing” or manual “numactl” command.

2023 Lenovo Internal. All rights reserved.

General concepts

• Interconnection Network

• Many technologies and vendors exist:
– nVidia Infiniband network (former Mellanox)

– Intel Omni-Path (almost dead)

– Proprietary

– Gigabit Ethernet

– …

• Many topologies exist:
– Flat Tree (with or without blocking factor)

– Torus, DragonFly…
The Niagara Supercomputer and the Dragonfly+ Topology

2023 Lenovo Internal. All rights reserved.

General concepts

• Interconnection Network : TOP 500

https://www.top500.org

https://www.top500.org/

2023 Lenovo Internal. All rights reserved.

General concepts

• Interconnection Network :
Performance

• Unidirectional bandwidth:
– Infiniband :

- FDR = 56 Gbit/s = ~6 GB/s

- EDR = 100 Gbit/s = 12 GB/s

- HDR = 200 Gbit/s = 24 GB/s

- NDR = 400 Gbit/s = 48 GB/s

– OmniPath: 100 Gbit/s = 12 GB/s

• Latency among all interconnects
is very similar between close
nodes : around 1µs

• Topology drives latency between
far nodes

– Number of links, switches,…

https://www.mdpi.com/2079-9292/11/9/1369

TOP 500 (June 2021)

https://www.mdpi.com/2079-9292/11/9/1369

2023 Lenovo Internal. All rights reserved.

General concepts

• Parallelism

• Parallelism is the process of processing several sets of
instructions simultaneously.

• Main Reasons for Using Parallel Programming
– Save time and/or money

- Using 16 cores instead of 1 core will ideally reduce execution time
by 16x

– Solve larger / more complex problems

- Using 4 nodes allows application to use 4x more memory

– Make better use of hardware

- Hpc hardware is full of parallelism that must be used for good
efficiency

– Prepare the future

- Trends in HPC are showing that

- Processors and accelerators are getting more and more “cores”

- Systems are continuing increasing in size

2023 Lenovo Internal. All rights reserved.

General concepts

• Parallelism

• Multiple levels of parallelism:
– Processor core units : load, store, branch, scalar compute, vector

units…

– Hyper threading, SMT

– Multi cores, multi processors

– Accelerators

– Multi nodes with each multiple processors and accelerators

– Multiple applications coupled all together

- Weather forecast models: Atmospheric + ocean + hydrology + ice
+ …

- Each of the codes is using a multi nodes cluster

- All codes are communicating to others, while internal
communications occurs inside each code.

• HPC storage is also full of parallelism
– Parallel filesystem

- Spectrum Scale (GPFS), Lustre, WEKA…

– Parallel I/O is critical for complex HPC simulation efficiency

- PNETCDF, PHDF5, MPI I/O…

2023 Lenovo Internal. All rights reserved.

General concepts

• Parallelism

• Which tools to use for each level of
parallelism ?

– This list is not exhaustive, many
alternatives exist

• Usually, complexity and time to learn
and master is increasing from top to
bottom of the list

Processor core units : load, store, branch, scalar compute,
vector units…

• Compilers

Hyper threading & SMT, Multi cores, multi processors in a
node

• OpenMP, MPI, throughput, SyCL…

Multi nodes with each multiple processors and accelerators

• MPI, PGAS, Charm++…

Accelerators

• Specific libraries : CUDA, ROCm, SyCL, OpenCL, OpenACC…

Multiple applications coupled all together

• Coupling library (OASIS, OpenPALM, LAM …)

• Own implementation

2023 Lenovo Internal. All rights reserved.

General concepts

• Power Consumption

• Current supercomputers are consuming huge amount of electricity for
their operation:

– #1 “Frontier” : 23 MW , #2 “Fugaku” : ~29 MW…

– And this is not expected to decrease in near future: processors and GPUs are
increasing their TDP :

- Intel Sapphire Rapids processor is up to 400W

- AMD Genoa/Bergamo is up to 400W

- nVidia H100 is at 700W

• Electricity cost is increasing significantly, and this will continue
– Global warming evidence and its consequences on reducing/stopping oil-based

electricity production, war…

• Huge focus is now on power efficiency for hpc centers
– Customer RFPs often ask for TCO analysis over multiple years with cost of

operation included in the overall budget

– Before it was mostly based on pure performance, without any consideration for
operations costs

https://tradingeconomics.com/france/electricity-price

https://www.top500.org/statistics/efficiency-power-cores/

https://tradingeconomics.com/france/electricity-price
https://www.top500.org/statistics/efficiency-power-cores/

2023 Lenovo Internal. All rights reserved.

General concepts

• Power Consumption

• Some solutions exist:
– Liquid cooling

- Hardware solution like Lenovo “Neptune” technology

- https://www.lenovo.com/us/en/servers-storage/neptune/

- Hot water can be reused for other usage (urban heating…)

– EAR: Energy Management Framework

- Software solution, almost transparent to users

- https://www.bsc.es/sites/default/files/public/bscw2/content/software-
app/technical-documentation/ear_sc19_november.pdf

- https://lenovopress.lenovo.com/lp1646.pdf

https://www.lenovo.com/us/en/servers-storage/neptune/
https://lenovopress.lenovo.com/lp1646.pdf
https://lenovopress.lenovo.com/lp1646.pdf

2023 Lenovo Internal. All rights reserved.

General concepts

• Power Consumption

• Power and energy data can be measured and retrieved from multiple
sources:

– Power DC from components with “sampling”:

- sudo ipmi-sensors --sensor-types=Current|grep -e "Sys Power" -e "CPU

Power" -e "Sys Fan Pwr" |awk -F"|" '{print $4}'|xargs

- Provides min/average/median/max power

- Allows computing energy value thanks to exécution time.

– Energy AC & DC:

- sudo ipmitool raw 0x2e 0x81 0x66 0x4a 0 0x20 1 0x82 1 0x08

- sudo ipmitool raw 0x2e 0x81 0x66 0x4a 0 0x20 1 0x82 0 0x08

- To be called before and after exécution (serial, mpi…), make the difference per
node and sum accross all nodes to get total energy consumed.

• Higher level tools can show power and energy information
– Job scheduler

– System monitoring tools (ganglia…)

– System management tools (Xclarity…)

2023 Lenovo Internal. All rights reserved.

General concepts

• Hardware evolution : Comparison of installed
processor with current processor generation

• Number of cores per socket is increasing a lot
– From 16 up to 128 for AMD Bergamo CPU

• TDP is also increasing a lot
– From 125W up to 400W

• Clock frequencies remain almost stable
– Turbo frequencies on AMD processors are

significantly higher than on Intel

• L3 cache size increases a lot
– but not per core

• Memory bandwidth increases a lot
– More memory channels, new DDR5 technology,

increased dimm frequency

Manufacturer Intel Intel Intel AMD AMD

Codename Skylake Icelake

Saphirre

Rapids Genoa Bergamo

Model 6130 8360Y 8480+ 9654 9754

Lithography (nm) 14 10 7 5 5

TDP (W) 125 250 350 400 400

#cores 16 36 56 96 128

Nominal frequency (GHz) 2.1 2.4 2 2.4 2.05

Max Turbo Frequency (GHz) 3.7 3.5 3.8 3.7 3.2

Max All cores Turbo Frequency (GHz) 2.8 3.1 3 3.55 3.2

Max All cores AVX512 Turbo Frequency

(GHz) 1.9 2.6 2.5 3.55 3.2

L3 Cache (MB) 22 54 105 384 256

L3 Cache per core (MB) 1.375 1.500 1.875 4.000 2.000

Memory type DDR4 DDR4 DDR5 DDR5 DDR5

Memory Max speed (MHz) 2666 3200 4800 4800 4800

#memory channels 6 8 8 12 12

Public price ($) 1900 5383 10710 11805

2023 Lenovo Internal. All rights reserved.

General concepts

• Performance evolution on 2 sockets
node

• Peak and HPL performance is growing a
lot

– HPL efficiency on AMD CPUs is higher than
100% because HPL benefits from Turbo
unlike Intel

• Memory bandwidth (STREAM) is
increasing significantly

– From 185GB/s up to 765 GB/s

• But metrics per core are not progressing
much

– It depends on the processor model selected :
16 cores CPUs still exist in SPR and Genoa
lines.

Intel processors AMD processors

2023 Lenovo Internal. All rights reserved.

General concepts

• Optimize, but optimize what ?

• There are multiple aspects of HPC application that can be optimized for:

– Execution time (all codes) & performance metrics (ns/day for Gromacs, TF/s for HPL…)

- Allow single execution to go as fast as possible

– Power consumption and energy

- Reduce energy consumed by the application

– Throughput execution

- Find best settings to run maximal number of parallel executions in shortest time

– TCO optimization

- Global center view : cooling, supercomputer, electricity cost…

2023 Lenovo Internal. All rights reserved.

General concepts

• Limiting factors for optimal performance
& Ways of optimizing

• Non optimal CPU performance

• Compiler optimization

– Play with compilers options to generate more optimized binary using
hardware more efficiently

– More details soon

• Source code optimization

– Transform the source code to be more efficient:

- Remove unnecessary operations

- Improve data movement to reduce depend on memory subsystem or
improve cache usage

- Help compilers to make a better job…

• Algorithmic optimization

– Make global changes in the source code to fully modify execution behavior
and remove hard performance limit

- Change algorithm used: iterative solver method…

- Change data structure: AoS vs SoA, use sparse matrix formats vs
dense, …

- Usually takes long time to design and implement, but could provide
highest improvement

• Poor parallelization

– Add shared memory (OpenMP), distributed (MPI) and/or accelerated
(CUDA/ROCm/SyCL…) parallelisms

– Optimize synchronization, communications, efficiency…

– Reduce load imbalance

– Improve scalability

• System not optimized

– Tune UEFI settings

– Apply Linux tuning

- Control frequencies, Turbo mode, memory balancing, thp…

– Job scheduler customization

- Allow multiple jobs per node

- Shutdown nodes not used after some time

– Storage tuning

• Not efficient environment

– Ensure process and memory affinities

– Tools update (compilers, libraries,…)

– Libraries runtime

- MPI environment variables…

- I/O libraries

2023 Lenovo Internal. All rights reserved.

General concepts

• Benchmarking Workflow for HPC
Application Optimization

• Standard iterative process →

• To be repeated until performance is
estimated good enough

– Criteria to be defined before starting

• Time consuming for people and
systems

• No guarantee of huge improvement

Compilation

• Various opt options

• Inlining

• Vectorization

• OpenMP

Execution

• Various processors

• Various core counts

• Various frequencies

• Mix OpenMP * MPI

Profiling

• Flat profile

• OpenMP/MPI profile

• Hardware counters

• Power consumption

Analysis

• Characterization

• Roofline model

• Vectorization

• Load imbalance

• Perf/price/power analysis

Optimization

• Process/thread/memory Affinities

• Compiler options

• Vectorization

• OpenMP

• MPI

• System tuning

• HyperThreading

• Source code modifications

2023 Lenovo Internal. All rights reserved.

Présentation des
outils de
construction de
code

2023 Lenovo Internal. All rights reserved.

Concepts généraux

• Generic compilation process

2023 Lenovo Internal. All rights reserved. 39

COMPILERS

2023 Lenovo Internal. All rights reserved.

Compiler: INTEL CLASSIC COMPILER

Compiler Language

icc C

ifort
Fortran

(77 / 90 / 95 / 2003)

icpc C++

2023 Lenovo Internal. All rights reserved.

Compiler: INTEL ONEAPI COMPILER

Compiler Language

icx C

ifx
Fortran

(77 / 90 / 95 / 2003)

icpx C++

2023 Lenovo Internal. All rights reserved.

Intel Compiler Common Flags

2023 Lenovo Internal. All rights reserved.

Compiler: GNU COMPILER COLLECTION (GCC)

Compiler Language

gcc C (can also build FORTRAN programs)

gfortran
Fortran

(77 / 90 / 95 / 2003)

g++ C++

2023 Lenovo Internal. All rights reserved.

CLANG: C Compiler from LLVM Framework

• C/C++ from LLVM project.

• FORTRAN version in development.

• Most flags from GCC can be used with CLANG.

44

2023 Lenovo Internal. All rights reserved.

GNU C and Intel Compiler Flag Comparison

45

GNU Compiler Flags Intel Classic Compiler Flags Intel OneAPI Compiler Flags Description

-O2 -O2 -O2 Optimize for speed (default)

-O3 -O3 -O3 High-level optimizer

-fast -fp-model fast -fp-model fast
“fast” Boost computational if not

sensible of inaccuracy

-g -g -g Create symbols for debugging

-S -S -S Generate assembly files

-fopenmp -qopenmp -qopenmp OpenMP support

-march=icelake-server -xCORE-AVX512 -xCORE-AVX512 Generate AVX512 code

-floop-parallelize-all -parallel -parallel
Automatic parallelization for

OpenMP threading

-pg -fprofile-generate -prof_gen -prof_gen Generate PGO files

-fprofile-use -prof_use -prof_use Use PGO files

2023 Lenovo Internal. All rights reserved. 46

MATHEMATICAL LIBRARIES

2023 Lenovo Internal. All rights reserved.

Netlib Math Library

• Open Source

• BLAS (vector and matrix operations)

– Level 1: vector-vector

– Level2: matrix-vector

– Level3: matrix-matrix

– Single, double, complex and double complex precision

– Written in FORTRAN

– Ex:

- DAXPY: compute double precision y=a*x+y (a is scalar, y and x vectors)

- DGEMM: double precision matrix-matrix multiply

• CBLAS: C version of BLAS

• LAPACK: Solve linear equation systems.

– Written in FORTRAN

– Ex:

- DTRSM: Solve A*X = alpha*B, alpha is scalar, X and B are matrices, A is triangular matrix. X is unknown.

• ScaLAPACK: distributed version of Lapack using BLACS (Communication BLAS) and PBLAS (Parallel BLAS).

47

2023 Lenovo Internal. All rights reserved.

Math Architecture Tuned Libraries

• Intel MKL
– Intel tuned Math library

– Use “-mkl” keyword with Intel compiler

– BLAS, LAPACK and ScaLAPACK support. For FFT, need to build FFT wrapper library.

• AOCL (AMD Optimized CPU Libraries)
– AMD tuned Math Library

– BLIS, Sparse, ScalaPack, FFTW, etc.

• nVidia GPU Libraries:
– cuBLAS, cuSPARSE, cuFFT, etc.

2023 Lenovo Internal. All rights reserved.

Intel MKL

• Mathematical library for Intel processor

• Features:

– BLAS

– LAPACK

– BLACS

– ScaLAPACK

– FFT

- Support complex-to-complex, real-to-complex, complex-to-real transform for one and two dimensional

- For three to seven dimensional, support complex-to-complex

– FFTW interface for FFT

• Some routines support OpenMP

– LAPACK (GETRF, POTRF and GBTRF routines)

– BLAS

– DFT

– FFT

– Control with environment variable

- MKL_NUM_THREADS

49

2023 Lenovo Internal. All rights reserved.

Static VS Dynamic, Serial VS Multi-Threads

• Static VS Dynamic

– Intel MKL library can be linked statically

- -static-intel

– Advantages

- Normally faster

- Could benefit from IPO

– Disadvantages

- Bigger binary

- Requires relinking to benefit from newer library version after upgrade

• Serial VS Multi-Threads

– Code can be linked to multi-threaded version of the library

– Advantages

- Effort-free introduction of multi-threading into user application

– Disadvantages

- Can create conflicts with natively multi-threads code

- OMP_NUM_THREADS VS MKL_NUM_THREADS

– Note

- Multi-threaded version is normally as fast as the serial one in single-thread mode

50

2023 Lenovo Internal. All rights reserved.

Intel MKL Command Line Advisor

51

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html

2023 Lenovo Internal. All rights reserved. 52

MPI LIBRARIES

2023 Lenovo Internal. All rights reserved.

MPI Libraries

• Intel MPI

• OpenMPI

• MVAPICH2

• MPICH2

• Wrappers are available to avoid specifying header and library paths during compilation and link:
– C: mpicc (using GCC), mpiicc (using Intel C Compiler)

– C++ : mpicxx, mpiicpc

– FORTRAN: mpif90, mpifort, mpiifort

• For Intel MPI, C compiler binary can be override using “-cc=” flags or setting I_MPI_CC/ environment
variables (same for C++ using “–cxx=“ or I_MPI_CXX and for FORTRAN using I_MPI_F90)

• For OpenMPI, OMPI_MPICC, OMPI_MPICXX, OMPI_MPIF90

2023 Lenovo Internal. All rights reserved.

Intel MPI

Compile Source Files

Wrapper Compiler Language

mpiicc icc C

mpiifort ifort Fortran

mpiicpc icpc C++

54

• Intel MPI environment Loading

– Using Intel-provided scripts

-source <Intel MPI>/bin64/mpivars.sh

– Using Modules

-module load intel_mpi/<Version>

• How-To: Check Wrapper Command Details

– <Wrapper> -show

• Wrappers arguments come at the end of the compiler command

– mpiicc <Compiler Flags> <Source File>

=

– icc <Compiler Flags> <Source File> <Wrapper Arguments>

2023 Lenovo Internal. All rights reserved.

Open MPI

Compile Source Files

Wrapper Compiler Language

mpicc gcc C

mpif77 gfortran Fortran 77

mpif90 gfortran Fortran 90

mpic++

mpiCC

mpicxx

g++ C++

55

• Open MPI environment Loading

– Using Modules

-module load open_mpi/<Version>

– Manually

-export PATH

-export LD_LIBRARY_PATH

2023 Lenovo Internal. All rights reserved.

Open MPI

Usual Mistakes

• bash: orted: command not found
– Requires ORTED command to be in default user path

– export PATH=/usr/mpi/intel/openmpi-1.4.2-qlc/bin

- In File: .bashrc

• /usr/mpi/intel/openmpi-1.4.2-qlc/bin/orted: error while loading shared libraries: libimf.so: cannot open shared
object file: No such file or directory

– Requires Intel Compilers libraries to be located

– export LD_LIBRARY_PATH=/logiciels/intel/Compiler/11.1/072/lib/intel64

- In File: .bashrc

• <User Binary>: error while loading shared libraries: libmpi.so.0: cannot open shared object file: No such file
or directory

– Requires current user environment to be exported to MPI tasks

– -x LD_LIBRARY_PATH

- In MPIRUN command

56

2023 Lenovo Internal. All rights reserved.

MPICH2 / MVAPICH2

Similar syntax for execution than Intel MPI.

57

Wrapper Compiler Language

mpicc gcc or icc (depends on compilation) C

mpif77 / mpif90 / mpifort gfortran or ifort (depends on compilation) Fortran 77 / Fortran 90

mpicxx g++ or icpc (depends on compilation) C++

2023 Lenovo Internal. All rights reserved.

Makefile Overview

Makefile structure Example

<rule>:<rule dependencies>

[tab] <command 1>

[tab] <command 2>

[…]

matrixmul.o:matrixmul.c matrix.h

icc –c matrixmul.c

Recursive Makefile Example

<rule>:

cd <subdir> && $(MAKE)

matrixmul.o:

cd multiply && $(MAKE)

• Execute the first rule of file ‘makefile’ or ‘Makefile’ presents in the current directory:

– make

• Specify wich rule to use:

– make clean

-Execute the rule ‘clean’ of the makefile

• Concurrent execution

– make -j 3

-Launch 3 complementary executions of the Makefile commands.

2023 Lenovo Internal. All rights reserved.

Implicit Rules of Makefile

Implicit rules use implicit environment variables Meaning

CC C compiler

FC FORTRAN compiler

CFLAGS Flags for C compiler

FFLAGS Flags for FORTRAN compiler

FDFLAGS Flags for the linker

More: http://www.gnu.org/software/make/manual/make.html#index-flags-for-compilers-861

Implicit rules use Implicit variables Meaning

$@ the rule name

$^ the rule dependencies

$? rule dependencies newer than the target

More: http://www.gnu.org/software/make/manual/make.html#index-automatic-variables-933

2023 Lenovo Internal. All rights reserved.

Advanced Use of Makefile

Wildcard character Normal form

clean:

rm -f *.o

clean:

rm –f matrix.o vector.o mulmv.o

sources := $(wildcard *.c) sources := matrix.c vector.c mulmv.c

objects := $(patsubst %.c,%.o,$(wildcard *.c) objects := matrix.o vector.o mulmv.o

Conditionnal value Example

ifeq (<variable>, <value>)

<command 1>

<command 2>

[…]

else

<command 1’>

<command 2’>

[…]

endif

ifeq ($(PROFILING), yes)

FLAGS += -pg

endif

ifeq ($(INSTRUMENT_MPI), yes)

$(CC) –c instr_mpi.c –o instr_mpi.o

$(CC) mpi_mul.c –o mpi_mul instr_mpi.o

else

$(CC) mpi_mul.c –o mpi_mul

endif

• Wildcard characters:

– Use the Bourne shell: ‘*’, ‘?’ and ‘[…]’

2023 Lenovo Internal. All rights reserved.

Outils de
diagnostic,
profiling, analyse

2023 Lenovo Internal. All rights reserved.

LSCPU

• The command lscpu prints CPU
architecture information
from sysfs and /proc/cpuinfo as shown
below:

• Important information for HPC folks:
– Name of processor

– Number of cores

– Clock frequencies

– Hyperthreading mode

– Number of Numa nodes

– Vector units supported by the processor

2023 Lenovo Internal. All rights reserved.

NUMACTL

• The command numactl allows lot of actions
regarding NUMA information: scheduling,
memory, binding…

• Reports
– Number of numa nodes

– Numbering of cores in numa nodes

– Size of numa nodes

• Binds
– Processes to cores & numa nodes

– Memory to numa nodes

– Interleaving…

2023 Lenovo Internal. All rights reserved.

TOP / HTOP

• System monitoring

– Core usage

– Memory usage

– Process information

– Running status

– Owner

• Monitor the whole node

– Limited by operating system

– Can be difficult with large core counts

https://htop.dev/

https://htop.dev/

2023 Lenovo Internal. All rights reserved.

NMON

• Core utilization and binding

• Process information
– PID

– CPU used

– Virtual and physical memory

• Network
– Data transferts on each interface

• Memory
– Memory used, free

• I/O
– Disk and partition usage

• And much more !
• https://nmon.sourceforge.net/pmwiki.php

https://nmon.sourceforge.net/pmwiki.php

2023 Lenovo Internal. All rights reserved.

The GNU Debugger (GDB)

• GNU Debugger
– Interactive command line debugger

– A graphic interface also exists: the Data Display Debugger

• Pre-requisite
– Have to integrate symbols in your code

- Compile with flag ‘-g’

• Invocation Command
– Serial

- gdb <Binary>

– Distributed

- <MPIRUN Command> xterm -e gdb <Binary>

- Open as many Xterm windows as MPI jobs

- Reserved for small number of MPI tasks

• Some GUI exist for GDB
– https://sourceware.org/gdb/wiki/GDB%20Front%20Ends

https://sourceware.org/gdb/wiki/GDB%20Front%20Ends

2023 Lenovo Internal. All rights reserved.

The GNU Debugger (GDB): GDB Internal Commands

Command Argument Explanation

b <Function> Set a breakpoint to the specified function

b <File>:<Line> Set a breakpoint on the specified source file / line

run [<Binary Args>] Launch program execution

p <Variable Name> Display the value or the specified variable

n - Execute the next instruction

c - Continue the program execution

quit Quit the debugger and release the program

2023 Lenovo Internal. All rights reserved.

PERF

• Perf is a complex linux tool

• Included in the Linux kernel, under tools/perf, and is
frequently updated and enhanced.

• It can instrument CPU performance counters,
tracepoints, kprobes, and uprobes (dynamic tracing).

• It is capable of lightweight profiling.
– perf record <command>

– perf report

– “post mortem” profiling (after execution ends)

– https://www.brendangregg.com/perf.html

https://www.brendangregg.com/perf.html
avbp.svg

2023 Lenovo Internal. All rights reserved.

PERF

• Perf top provides real time execution profiling
– Application

– System functions too

• Access to source and assembly codes
– With time spent on each “line” , instruction block in fact

• Required special Linux right (root or sudo)

2023 Lenovo Internal. All rights reserved.

GNU Profiler (GPROF)

• Compile the program with options: -g -pg
– Will create symbols required for debugging / profiling

• Execute the program
– Standard way

• Execution generates profiling files in execution directory
– gmon.out.<MPI Rank>

- Binary files, not human readable

– Nb files depends on environment variable

- 1 Profiling File / Process

- 3 Profiling Files only

- One file for the slowest / fastest / median process

• Allows profiling report generation
– From profiling output files

– Standard Usage

- gprof <Binary> gmon.out.<MPI Rank> > gprof.out.<MPI Rank>

Nice example:

https://moodle.nhr.fau.de/pluginfile.php/2393/mod_resource/conte

nt/3/gprof_2023.pdf

https://moodle.nhr.fau.de/pluginfile.php/2393/mod_resource/content/3/gprof_2023.pdf
https://moodle.nhr.fau.de/pluginfile.php/2393/mod_resource/content/3/gprof_2023.pdf

2023 Lenovo Internal. All rights reserved.

GNU Profiler (GPROF)

• Gprof example file

– 1: flat profile

-Summarize time spent in function and its children

– 2: call graph

-Order functions according to time

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls s/call s/call name

75.81 92.88 92.88 7000 0.01 0.01 calcul_

24.16 122.48 29.60 __intel_new_memcpy

0.02 122.50 0.02 __intel_new_memset

[…]

index % time self children called name

0.00 92.89 1/1 main [2]

[1] 75.8 0.00 92.89 1 MAIN__ [1]

92.88 0.00 7000/7000 calcul_ [3]

0.01 0.00 1/1 initialisation_ [6]

0.00 0.00 7000/7000 communication_ [8]

0.00 0.00 2/2 mpi_times_mp_mpi_time_ [9]

0.00 0.00 1/1 voisinage_ [10]

<spontaneous>

[2] 75.8 0.00 92.89 main [2]

0.00 92.89 1/1 MAIN__ [1]

92.88 0.00 7000/7000 MAIN__ [1]

[3] 75.8 92.88 0.00 7000 calcul_ [3]

[…]

1

2

2023 Lenovo Internal. All rights reserved.

Intel APS - Introduction

2023 Lenovo Internal. All rights reserved.

Intel APS - Overview

• Overview shows all areas and relative impact on code
performance

• Provides recommendation for next step in performance
analysis

• “X” collapses the summary, removing the flags (objective
numbers only)

2023 Lenovo Internal. All rights reserved.

Intel APS – parallel runtimes

• MPI Time
– How much time was spent in MPI calls

– Averaged by ranks with % of Elapsed time

– Available for MPICH-based MPI and OpenMPI

• MPI Imbalance
– Unproductive time spent in MPI library waiting for data

- Switched off by default

- Available for Intel MPI with APS_IMBALANCE_TYPE=1

- Over supported MPISs with APS_IMBALANCE_TYPE=2

• OpenMP Imbalance
– Time spent at OpenMP Synchronization Barriers normalized by

number of threads

– Available for Intel OpenMP

• Serial time
– Time spend outside OpenMP regions

– Available for Intel OpenMP, shared memory applications only

2023 Lenovo Internal. All rights reserved.

Intel APS – memory access and vectorization

• Memory stalls measurement with

• breakdown by cache and DRAM
– Average DRAM Bandwidth

– NUMA ratio

• Vectorization efficiency based on HW-event statistics with
– Breakdown by vector/scalar instructions

– Floating point vs memory instruction ratio

2023 Lenovo Internal. All rights reserved.

Intel APS – MPI Statistics

• MPI Time per rank
>aps-report –mpi-time-per-rank <result>

• Message Size Summary by all ranks

• >aps-report –message-sizes <result>

• Requires setting MPS_STAT_LEVEL=2
before collection launch

2023 Lenovo Internal. All rights reserved.

Intel APS – MPI Rank-to-Rank Communication

• Data Transfers for Rank-to-Rank Communication
– >aps-report –transfers-per-communication <result>

– Requires setting MPS_STAT_LEVEL=4 before collection launch

• Data Transfers for Rank-to-Rank Communication – UI
representation

– >aps-report –transfers-per-communication --format=html
<result>

– use “-v” to generate the chart by volume

2023 Lenovo Internal. All rights reserved.

Intel VTUNE

• mpirun –np XX vtune -collect performance-snapshot -r result_dir -- <bin>

• vtune-gui <folder name>

78

https://www.alcf.anl.gov/files/velesko_vtune_may.pdf

https://www.alcf.anl.gov/files/velesko_vtune_may.pdf

2023 Lenovo Internal. All rights reserved.

Optimisation de
l'exécution

2023 Lenovo Internal. All rights reserved. 80

HOTSPOTS

2023 Lenovo Internal. All rights reserved.

VTUNE & Hotspot

• mpirun –np XX vtune -collect hotspot -r result_dir -- <bin>

• vtune-gui <folder name>

81

2023 Lenovo Internal. All rights reserved.

GPROF

• Compile with -pg flag

• Execute. It generates gmon.out file.

• Call:
– gprof <binary> gmon.out

82

2023 Lenovo Internal. All rights reserved. 83

ADVANCED COMPILATION

2023 Lenovo Internal. All rights reserved.

Intel Procedural Optimizations (IPO)

2023 Lenovo Internal. All rights reserved.

Extends optimizations across file boundaries

85

Compile & Optimize

Compile & Optimize

Compile & Optimize

Compile & Optimize

file1.c

file2.c

file3.c

file4.c

Without IPO

Compile & Optimize

file1.c

file4.c file2.c

file3.c

With IPO

-ip Only between modules of one source file

-ipo Modules of multiple files/whole application

2023 Lenovo Internal. All rights reserved.

IPO: A Multi-Pass Optimization

86

Linking: icc –ipo main.o func1.o func2.o

Pass 1

Pass 2

virtual .o

executable

Compiling: icc -c –ipo main.c func1.c func2.c

2023 Lenovo Internal. All rights reserved.

What you should know about IPO

• Inlining of functions is the most important feature of IPO but there is much more
– Inter-procedural constant propagation

– MOD/REF analysis (for dependence analysis)

– Routine attribute propagation

– Dead code elimination

– Induction variable recognition

• Inlining automatically enabled with O2 and O3

• IPO extends compilation time and memory usage

87

2023 Lenovo Internal. All rights reserved.

Profile-Guided Optimizations (PGO)

88

2023 Lenovo Internal. All rights reserved.

PGO Usage: Three-Step Process

89

Instrumented Compilation

icc -prof_gen prog.c

Instrumented Execution

prog.exe (on a typical dataset)

Feedback Compilation

icc -prof_use prog.c

DYN file containing
dynamic info: .dyn

Instrumented
executable:
prog.exe

Merged DYN
summary file: .dpi
Delete old dyn files
unless you want their
info included

Step 1

Step 2

Step 3

2023 Lenovo Internal. All rights reserved.

Auto-Parallelization Invocation

Options Value Purpose

-parallel - Enable automatic parallelization

-par-threshold Parallelization threshold

0 Parallelize always

100 Parallelize only if performance gain is 100%

50 Parallelize if probability of performance gain is 50%

• Intel Compiler can automatically parallelize the code

• Only applicable to very regular loops

• Pointers make it hard for the compiler to deduce memory layout

90

2023 Lenovo Internal. All rights reserved. 91

2023 Lenovo Internal. All rights reserved. 92

2023 Lenovo Internal. All rights reserved. 93

2023 Lenovo Internal. All rights reserved.

Basic Intel Flags for Vectorization (1/2)

94

2023 Lenovo Internal. All rights reserved.

Basic Intel Flags for Vectorization (2/2)

95

2023 Lenovo Internal. All rights reserved.

Intel AVX512 Code Generation

96

2023 Lenovo Internal. All rights reserved.

Compiler Optimization Reports

97

2023 Lenovo Internal. All rights reserved.

Optimization Report Example (1/3)

98

2023 Lenovo Internal. All rights reserved.

Optimization Report Example (2/3)

99

2023 Lenovo Internal. All rights reserved.

Optimization Report Example (3/3)

100

2023 Lenovo Internal. All rights reserved.

Intel Floating Point Flags

101

2023 Lenovo Internal. All rights reserved. 102

BINDING & MAPPING

2023 Lenovo Internal. All rights reserved.

Processor Affinity Management: Threads Affinity

103

• OMP_NUM_THREADS / KMP_NUM_THREADS / GOMP_CPU_AFFINITY

2023 Lenovo Internal. All rights reserved.

Intel MPI

Task Placement

Setting Purpose

-perhost <Nb Tasks>

-ppn <Nb Tasks>

-grr <Nb Tasks>

Processes per host = group round-robin distribution

-rr

I_MPI_PERHOST=1
Round-robin distribution; same as -perhost 1

I_MPI_PERHOST=all Map processes to all logical CPUs on a node

I_MPI_PERHOST=allcores Map processes to all physical CPUs on a node

104

• Default process layout is “group round-robin”

– Puts consecutive MPI processes on same node (this may be changed soon)

• Default process layout can be overriden through

– MPIEXEC Command Options

– I_MPI_PERHOST Environment Variable

2023 Lenovo Internal. All rights reserved.

Intel MPI

Processor Affinity Management: MPI Jobs

• Processor affinity is managed through environment variable
– I_MPI_PIN_PROCESSOR_LIST

• Possible values
– List of processors

- I_MPI_PIN_PROCESSOR_LIST=0,6

– Range of processors

- I_MPI_PIN_PROCESSOR_LIST=0-11

– Combination

- I_MPI_PIN_PROCESSOR_LIST=0-4,6-9

105

2023 Lenovo Internal. All rights reserved.

Intel MPI

Processor Affinity Management: MPI/OpenMP Jobs

• Processor affinity is managed through environment variable
– I_MPI_PIN_DOMAIN

• An Intel MPI domain contains
– One single MPI process

– All its attached threads

• Syntax Forms
– Domain description through multi-core terms

– Domain description through domain size and domain member layout

– Explicit domain description through bit mask

• Tips’n Tricks
– Use explicit domain mask to be sure of desired processor affinity

– Make sure of the outcome through monitoring

106

2023 Lenovo Internal. All rights reserved.

Intel MPI

Processor Affinity Management: MPI/OpenMP Jobs

107

2023 Lenovo Internal. All rights reserved.

Intel MPI

Processor Affinity Management: MPI/OpenMP Jobs

Option Variable Value Purpose

Multi-Core core | socket | node Create one domain per physical core / socket / node

Explicit Shape

<Size>[:<Layout>]

omp

auto

<Size>

:platform

:compact

:scatter

Create domains shaped according to following rules

Number of threads

Automatic (Nb Logical Processors / Nb MPI Processes)

Specified size

Following BIOS numbering of logical processors

On closest logical processors (default)

On farthest logical processors

Bit Mask [<Mask1>,<Mask2>]
Create explicit domains from hexadecimal masks

(cf. next slide)

108

2023 Lenovo Internal. All rights reserved.

Intel MPI

Processor Affinity Management: MPI/OpenMP Jobs

• Bit Mask

– Bit mask is expressed through hexadecimal format

– Calculation Method

- Write bit mask in binary format

- Translate value into hexadecimal

– Example

- Execution configuration: 2 processes per node x 6 threads per process

- Bit Masks

- Domain #1: 000000111111 3F

- Domain #2: 111111000000 FC0

• Usage Notes

– Process is not always bound to first logical processor of its domain

- Behaviour seems to have changed in latest Intel MPI version

- To be confirmed

– Process affinity does not imply threads affinity

- Other environment variables required

- cf. Threads Affinity

109

2023 Lenovo Internal. All rights reserved.

Open MPI

Processor Affinity Management: MPI Jobs

• Processor affinity is managed through MCA parameter
– mpi_paffinity_alone = 1

• MCA parameter set through (highest priority first):
– Command Line

- -mca mpi_paffinity_alone 1

– Environment Variable

- OMPI_MCA_mpi_paffinity_alone=1

– Configuration File

• Requires exclusive use of the computation nodes

• Processor affinity automatically activates memory affinity

110

2023 Lenovo Internal. All rights reserved.

Open MPI

Processor Affinity Management: MPI/OpenMP Jobs

• Processor affinity is managed through rankfile
– Rankfile allows task placement as well

– Rankfile provided to MPIRUN command through argument -rf

• Rankfile Syntax
– rank <Rank #>=<Hostname> slot=<Processor ID>

- <Processor ID> is OS core ID

- cf. CPUINFO listing

• Examples
– 6 MPI Processes / Node, 2 Threads / Process

- rank 0=ku-auh-ccn01-ib slot=0,1
rank 1=ku-auh-ccn01-ib slot=2,3
rank 2=ku-auh-ccn01-ib slot=4,5
…

– 2 MPI Processes / Node, 6 Threads / Process

- rank 0=ku-auh-ccn01-ib slot=0-5
rank 1=ku-auh-ccn01-ib slot=6-11
…

111

2023 Lenovo Internal. All rights reserved.

MVAPICH2

Processor Affinity

• Two policies: bunch and scatter

• Syntax: mpirun_rsh -np 4 -hostfile hosts MV2_CPU_BINDING_POLICY=bunch ./a.out

• By hands: MV2_CPU_MAPPING=0:1:4:5

• For Threads: MV2_CPU_MAPPING=0,2,3,4:1:5:6 (task #0 binding to cores 0,2-4)

112

2023 Lenovo Internal. All rights reserved. 113

MPI OPTIMIZATIONS

2023 Lenovo Internal. All rights reserved.

Intel MPI

Environment Variables

Variable Name Value Purpose

I_MPI_DEBUG
Level

0 / 1 / 2 / 3 / 4 / 5
Level of debugging for execution

I_MPI_FABRICS
<Intra-Node>:

<Inter-Node>

Fabrics to be used for intra-node and inter-node

communications

I_MPI_OUTPUT_CHUNK_SIZE <Size (KB)> Size of the stdout / stderr buffer

I_MPI_PIN_DOMAIN <Domain Mask>
Processor affinity management in mixed MPI/OpenMP

mode

I_MPI_PIN_PROCESSOR_LIST <Processor List> Processor affinity management in pure-MPI mode

I_MPI_ADJUST_<COLLECTIVE>
<ALGO NUMBER> Set the algorithm <ALGO NUMBER> when running

MPI collective <COLLECTIVE>

114

2023 Lenovo Internal. All rights reserved.

Intel MPI

Typical Sanity Checks

• Check selected fabric initialization
– Through environment variable I_MPI_DEBUG=2

• Check task placement
– Through environment variable I_MPI_DEBUG=3

• Check process pinning
– Through environment variable I_MPI_DEBUG=4

115

2023 Lenovo Internal. All rights reserved.

Optimizations of Intel MPI: Binding

• I_MPI_PIN=on Pinning Enabled

• I_MPI_PIN_MODE=pm Use Hydra for Pinning

• I_MPI_PIN_RESPECT_CPUSET=on Respect process affinity mask

• I_MPI_PIN_RESPECT_HCA=on Pin according to HCA socket

• I_MPI_PIN_CELL=unit Pin on all logical cores

• I_MPI_PIN_DOMAIN=auto:compact Pin size #lcores/#ranks : compact

• I_MPI_PIN_ORDER=compact Order domains adjacent

• I_MPI_PIN_PROCESSOR_LIST

• I_MPI_JOB_RESPECT_PROCESS_PLACEMENT=0: conflict with job scheduler

2023 Lenovo Internal. All rights reserved.

Optimization : I/O

• AVBP application is using MPIIO routines to write output files (thru parallel HDF5 library)

• Using default execution environment and large test case on 512 MPI tasks, we got the following profile for
I/O routines: (mpi task 0 - IMPI - no specific tuning for I/O)

--

MPI Routine #calls avg. bytes time(sec)

--

MPI_File_close 1 0.0 0.007

MPI_File_open 1 0.0 0.491

MPI_File_set_view 84 0.0 89.461

MPI_File_write_at 6 21.3 0.410

MPI_File_write_at_all 42 33753.8 90.456

• These calls to MPI I/O routines will use embedded versions from MPI library used to perform the parallel I/O
operations, and specially the ROMIO implementation.

2023 Lenovo Internal. All rights reserved.

Optimization I/O
ROMIO in IntelMPI

• The latest version of ROMIO implementation in MPICH 3.2 is introducing several new features like asynchronous collectives

• Latest IntelMPI library includes previous version and
therefore does not contain latest features,
but still provides optimized implementation:

– IntelMPI allows the user selecting the
filesystem matching the execution environment,
in our case GPFS filesystem:

export I_MPI_EXTRA_FILESYSTEM=on

Outdated : export I_MPI_EXTRA_FILESYSTEM_LIST=gpfs

Replaced by: I_MPI_EXTRA_FILESYSTEM_FORCE=gpfs

– It provides great performance improvement
over default options

• Additional optimization can be made on ROMIO
performance by using :

export ROMIO_PRINT_HINTS=yes

export ROMIO_HINTS=./romio_hints.txt

cat > $ROMIO_HINTS << EOOOF

romio_cb_read disable

romio_cb_write enable

romio_ds_read disable

romio_ds_write disable

EOOOF

• Global performance improvement is huge: > 40x for the I/O time

simulation_end_iteration = 1000

save_solution.iteration = 1000

save_temporal.iteration = 100

TwoPhasesCombustion test case, Lenox, 512 MPI, 512 cores, IFORT 16.0.1, IMPI 5.1.2 Dapludmixed

181 159 74 4

163

165

159

159

0.33

0.30

0.21

0.15

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0

50

100

150

200

250

300

350

400

no tuning romio tuning impi tuning impi+romio tuning

p
e

r
it

e
r

(s
e

c)

Ti
m

e
 (

se
c)

AVBP I/O Optimization

total MPI-IO time CPU+MPI Time per iter

https://www.mpich.org/2015/11/12/mpich-3-2-released/

2023 Lenovo Internal. All rights reserved.

Smarter Throughput for Lenovo HPC Clusters
Current Status

• On HPC cluster in production at customer site, scientific simulations are submitted to execution to a job scheduler, which
is the brain managing job queues, executions, steps, priorities, hardware assignments…

• Usual strategy for a job submission is to book a range of compute nodes and launch the job on these nodes.

– One application using all nodes exclusively

– Fixed resources for single code: processor cycles, memory/network/filesystem bandwidths, hyperthreads…

• Pros:
– Easy to manage and report accounting from job scheduler point of view

– Reproducibility of code performance across runs

• Cons:
– A single application is usually not able to saturate all available resources

- Wasted CPU cycles or memory/network/filesystem bandwidths

– Power consumption of the nodes may not be optimal HPC cluster:

- Each rectangle is a node

- Each color represents a job

- Each node is filled with one single code

2023 Lenovo Internal. All rights reserved.

Smarter Throughput for Lenovo HPC Clusters
Concept

• We propose to optimize usage of cluster resources at job scheduling level by sharing computing nodes between
applications stressing different resources:

– For instance: One code stressing CPU cycles, another saturating memory bandwidth, on same nodes, using 2 times more nodes.

• Pros:
– Usage of compute, network, I/O, memory… resources is optimized

– Better throughput performance at cluster level

– Better performance for some jobs (memory BW bound, network BW bound…)

– Smaller power consumption for same workload computed (?? To be checked)

• Cons:
– Performance reproducibility can’t be guaranteed

– Sometimes lower pure performance for some jobs

– More complex to setup: Job scheduler… HPC cluster:

- Each rectangle is a node

- Each color represents a job

- Each node is filled with one or more codes

2023 Lenovo Internal. All rights reserved.

Smarter Throughput for Lenovo HPC Clusters
Illustration for MPI codes

Q

P

I

M

e

m

o

r

y

IB

M

e

m

o

r

y

Socket 0 Socket 1

Node 0

Node empty

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

Q

P

I

M

e

m

o

r

y

IB

M

e

m

o

r

y

Socket 0 Socket 1

Node 0

CPU Bound code “A”

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

Q

P

I

M

e

m

o

r

y

IB

M

e

m

o

r

y

Socket 0 Socket 1

Node 0

Memory Bound code “B”

A A B

A A B

A A B

A A B

A A B

A A B

A A B

A A B

A A B

A A B

A A B

A A B

Q

P

I

M

e

m

o

r

y

IB

M

e

m

o

r

y

Socket 0 Socket 1

Node 0

CPU Bound code “A” +

Memory Bound code “B”

- Compute cores are saturated

- Memory bandwidth usage is low

- Network bandwidth is averagely used

- Resources wasted!!

- Compute cores usage is low

- Using lower number of cores per node

gives same performance

- Memory bandwidth is saturated

- Network bandwidth is averagely used

- Resources wasted!!

- Compute cores are saturated

- Memory bandwidth is saturated

- Network bandwidth is more used

- Throughput performance is optimized

by saturating available resources

2023 Lenovo Internal. All rights reserved.

Smarter Throughput for Lenovo HPC Clusters
Customer case : context

• Customer has 2 types of codes running on their computing center:
– CPU Bound codes, represented by CodeA (CFD application)

– Memory Bandwidth bound codes, represented by CodeB (meso-scale atmospheric application)

• Near future usage of HPC center is going to be half / half with these types of applications.

– Benchmark requirements are standalone runs for both codes on 5/10/20 nodes and estimation of throughput for the whole system.

– No output I/O during benchmark runs, only medium I/O reads for input files.

• Proposed system by Lenovo:
– Intel Xeon SKL-6132 14 cores @ 2.6GHz, network OPA 100Gbs with blocking factor 2:1 and 8X adapters 58Gbs.

• Throughput simulation based on 100 jobs of each required benchmark run = 600 jobs.
– CodeA on 5 / 10 / 20 nodes, CodeB on 5 / 10 / 20 nodes.

– Trivial interpolation for global performance simulation

– Memory bandwidth bound code CodeB launched with optimal number of processes per node to reach roof performance : ppn=12

– CPU bound code CodeA is then using all remaining cores on the compute node: ppn=24

– MPI processes of each code are “striped” across the 2 processors, i.e. both are using the 2 processors:

- Almost no degradation impact for CodeA

- CodeB benefits from the full memory bandwidth of the node (memory bandwidth per core is doubled)

2023 Lenovo Internal. All rights reserved.

Smarter Throughput for Lenovo HPC Clusters
Customer case: 2 codes study on Broadwell

• Running only 2 codes together

• Varying on Broadwell E5-2697v4:

– Clock frequency: nominal and turbo

– Memory speed: 2133MHz / 2400MHz

– Network: EDR / OPA

– Node counts

• Comparing Broadwell to Skylake

– Broadwell E5-2697v4 18 cores @ 2.3GHz

– SkyLake 8160 24 cores @ 2.1 GHz

– On 5 and 10 nodes with OPA

• Analysis:

– OPA and EDR provides same perf

– CodeA scales with clock frequency

– CodeB scales with memory frequency

– 2 jobs performance is limited by CodeB

• Conclusions on Broadwell:

– Instead of 503 sec * 5 nodes + 386 sec * 5 nodes = 444 sec in average on 10 nodes in dedicated mode

– Mix approach leads to 361 sec on 10 nodes

– Net performance gain is 83 sec on 10 nodes = 19% saved

2023 Lenovo Internal. All rights reserved.

Smarter Throughput for Lenovo HPC Clusters
Customer case: 2 codes study on SkyLake

• Conclusion :

– Similar behavior and benefits

- ~1.2x for CodeA

- ~1.35x for CodeB

• Instead of 311 sec * 5 nodes + 259 sec * 5 nodes = 285 sec in average on 10 nodes in dedicated
mode

• Mix approach leads to 229 sec on 10 nodes

• Net performance gain is 56 sec on 10 nodes = 17% saved

RATIOS measured on SKL-8160 5 10 mix vs standalone

CodeA standalone 259 141

CodeA mix (32ppn) 224 113 1.16 1.25

CodeB standalone 311 166

CodeB mix (16ppn) 229 119 1.36 1.39

2023 Lenovo Internal. All rights reserved.

Smarter Throughput for Lenovo HPC Clusters
Customer case: full system simulation

• In order to select best SKL processor for Customer cluster, we have
– build performance projections for each case (code * #nodes * SKU)

– simulated the full 600 jobs throughput on the several possible configurations based on 4 different SKUs, each SKU (and its price)
impacting the global number of nodes possible in customer budget:

• Results:
– SKL 6132 14 cores @ 2.6GHz is the best processor to optimize throughput performance.

– Global throughput simulation time in standard mode (dedicated nodes to codes) is 22.1 hours

– Applying our throughput optimization method, global time is 18.04 hours to do the same amount of work.

- This is ~19% computing time saved for the same workload.

Total number

of nodes in

cluster

Processor

type

#cores

per

socket

Freq

GHz
5 10 5 10 20

Time for the whole

workload (hours) in

proposed cluster

102 SKL-6132 14 2.6 347 175 301 162 83 22.10

93 SKL-6140 18 2.3 308 156 303 163 84 22.91

88 SKL-6142 16 2.6 314 158 301 162 83 24.28

85 SKL-6148 20 2.4 270 137 302 162 84 23.52

number of nodes used for each code

AVBP projections MESONH projections USING MIX

18.04

18.58

19.71

18.95

Time for the whole

workload (hours) in

proposed cluster

2023 Lenovo Internal. All rights reserved.

References

• https://doku.lrz.de/education-and-training-10745708.html

– Multiple good trainings from LRZ and its partners, PRACE, Intel, nVidia

• https://hpc.llnl.gov/documentation/tutorials

– https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial

• https://www.nersc.gov/assets/pubs_presos/OLCF-Data-Intro-IO-Gerber-FINAL.pdf

• https://www.rc.fas.harvard.edu/wp-content/uploads/2016/03/Intro_Parallel_Computing.pdf

• https://prace-ri.eu/wp-content/uploads/hpc-centre-electricity-whitepaper-2.pdf

• https://lwn.net/Articles/250967/

• https://events.prace-ri.eu/event/1353/attachments/2100/4272/2022%20-%20PRACE%20EE%20kurz%20-
%20theory.pdf

https://doku.lrz.de/education-and-training-10745708.html
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
https://www.nersc.gov/assets/pubs_presos/OLCF-Data-Intro-IO-Gerber-FINAL.pdf
https://www.rc.fas.harvard.edu/wp-content/uploads/2016/03/Intro_Parallel_Computing.pdf
https://prace-ri.eu/wp-content/uploads/hpc-centre-electricity-whitepaper-2.pdf
https://lwn.net/Articles/250967/
https://events.prace-ri.eu/event/1353/attachments/2100/4272/2022%20-%20PRACE%20EE%20kurz%20-%20theory.pdf

